一、极限
1.数列极限
1.1 定义
定义:,有。
1.2 几何解释
1.3 性质
唯一性:收敛数列的极限唯一,数列收敛则极限唯一;
有界性:收敛数列一定有界,数列收敛则必有界,有界但不一定收敛;
保号性:收敛数列具有保号性,当数列极限趋于a时,那就存在一个正整数N,使得n>N时,数列值与a保持同号。
同理性:收敛数列的任一子数列收敛于同一极限,若两个子数列收敛于不同的极限,则原数列必发散。
2.函数极限
2.1 自变量x趋于有限值时的函数极限
2.1.1 语言
, 当时,恒有。
2.1.2 几何解释
找一个在的一个领域,只要x落在为中心,以为距离的小区域里,使得函数值都落在这个领域内。
- 当时f的极限存在左右极限均存在且相等。如果中有一个不存在,或者两个虽然存在,但是不相等,则不存在.
2.2 自变量x区域无穷大时的函数极限
2.1.1 语言
,当时,恒有.
2.1.2 几何解释
2.3函数极限的性质
唯一性:函数极限唯一
局部有界性:如果,那么存在常数(界)和,使(局部)时,有.
局部保号性:如果,且A>0(或A<0),那么存在常数,使得(局部)时,有(或).
3.夹逼定理
4.基本求极限方法
4.1 型
常用方法:洛必达法则
等价无穷小代换
泰勒公式
4.2 型
常用方法:洛必达法则
分子分母同除以分子和分母各项中最高阶的无穷大
基本极限,分子分母最高项
4.3 型
常用方法:同分化(适用于分式差)
根式有理化(适用于根式差)
提无穷因子,然后等价代换或变量代换(t=1/x)、泰勒公式
4.4 型
常用方法:f(x)由分子变为分母,化为型或 型。
4.5 型
常用方法:凑基本极限,其中;
改写成指数,使用洛必达法则;
利用结论:若且则
4.5 和型
此类函数一定是幂指函数,即,求解的方法是将其改写成指数形式,从而化成.
5.洛必达法则与等价无穷小
5.1洛必达法则
在一定条件下通过分子分母分别求导再求极限确定未定式值的方法。
5.2等价无穷小
二、导数
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数的自变量x在一点上产生一个增量时,函数输出值的增量与自变量增量Δx的比值在趋于0时的极限a如果存在,a即为在处的导数,记作或。
2.1导数的几何解释
2.2基本求导公式
三、偏导数
在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。
3.1 x方向的偏导
设有二元函数 ,点是其定义域D 内一点。把 y 固定在 而让 x 在 有增量 ,相应地函数 有增量,。
如果 与 之比当 △x→0 时的极限存在,那么此极限值称为函数在处对 x 的偏导数,记作或函数 在处对 x 的偏导数,实际上就是把 y 固定在 看成常数后,一元函数在 处的导数。
3.2 y方向的偏导
同样,把 x 固定在 ,让 y 有增量 ,如果极限存在那么此极限称为函数 在 处对 y 的偏导数。记作。
wanderlus_ter: 拉普拉斯反变换公式是不是写错了
梦落残阳: 世界就需要你这样的人,nice
岗小李: 确实写错了,感谢!
sodcsdn: 欧拉公式写错了,是+1,写成-1了